Felejtsük el, hogy a klímaváltozás elől menekülve a Marsra költözünk
A technológiai fejlődés és a klímaváltozás erősödése miatt egyre népszerűbb a gondolat, hogy az emberiség maga mögött hagyja a Földet, és egyszerűen átköltözik egy másik bolygóra. Ha eltekintünk attól, hogy ezzel lemondunk egyetlen ismert otthonunkról, a bolygóközi költözést olyan tényezők akadályozzák, amelyeknek a megoldása időben, tudásban és erőforrásokban is meghaladják a képességeinket. Lehet, hogy belátható időn belül kolóniákat tudunk létesíteni egy másik bolygón, és elindul az űrturizmus, azonban az általunk okozott környezeti-éghajlati válság elől nem tudunk, és nem is érdemes más bolygóra menekülnünk - írja a Másfélfok.
A NASA kutatói bejelentették, hogy sikerrel vontak ki belélegezhető oxigént a Mars légköréből a Perseverance marsjáró alábbi, mindössze kenyérpirító méretű eszközének segítségével.

Forrás: A Preseverance marsjáró MOXIE nevű kísérleti műszere. Forrás: NASA
Bár egyelőre csak 10 percre elegendő oxigént élvezhetne ebből az arra tévedő űrhajós, de az eredmény rávilágít, hogy technológiai megoldások segítségével élhetetlen körülményeket is élhetővé varázsolhatunk. A gond ezzel az, hogy az oxigén hiánya csak egy a számtalan akadályból, amit le kellene küzdenünk, hogy az emberi szervezet számára élhetővé tegyünk egy bolygót. A példánál maradva, mindenképp szükségünk lesz légkörre.
Nem mindegy mekkora a kiszemelt bolygó, ahova települni szeretnénk. Csillagrendszerünknél maradva, melynek központi csillaga a Nap, kozmikus gáz- és porfelhő sűrűsödéséből alakultak ki a gáz- és kőzetbolygók. Az óriási gázbolygók, mint a Jupiter vagy a Szaturnusz, gravitációjuknak köszönhetően meg tudják tartani a légkörüket, azonban
Egy bolygó légköre, ha ki is alakul, múlandó lehet, a Föld esetében sem volt ez másképp. A Föld kialakulásakor, ha korábban keletkezett is kozmikus eredetű légkör, az a Nap közelségéből adódóan elveszett. Ennek oka a napszél, vagyis a Napból kiáramló nagy energiájú töltött részecskék, melyek elragadják a légkört, ha nem elég erős a gravitáció, hogy megtartsa azt. Minél könnyebb atomokból és molekulákból áll a légkör, annál könnyebb azokat a napszélnek “elfújnia.”
A Föld másodlagos légköre már a bolygón – például vulkanizmus során felszabaduló gázokból – keletkezett, majd az évmilliárdok során további változáson ment keresztül a fotoszintézis megjelenésével. Ezt a második légkört már védte a kellően erős gravitáció és a Föld mágneses tere.

A bolygó mágneses tere pajzsként véd a napszéltől. Forrás: NASA's Scientific Visualization Studio
Ez a légköri oxigén feldúsulásához és a szén-dioxid-szint csökkenéséhez vezetett, ami az élet számára kellemesebb hőmérsékletre hűtötte a bolygót.
Az üvegházhatásnak köszönhetően a légkör megfelelő hőmérsékletet biztosít ahhoz, hogy a víz egy része megmaradjon folyékony halmazállapotban. A kozmikus sugárzás egy részétől, valamint bizonyos mérettartományig a meteoritoktól is védelmet nyújt. És mint a NASA is megmutatta, ha nem is azonnal belélegezhető oxigént, de kivonható oxigént tartalmazhat, ami biztosíthatja számunkra az életet, ahogy most ismerjük.
A realitás talaján maradva először a saját Naprendszerünkben kell keresnünk a lehetőségeket. Mivel szilárd felszínre feltétlenül szükségünk van, így a kőzetbolygókban kell gondolkoznunk.
A Merkúron a Naphoz való közelsége és a légkör hiánya miatt több száz fokos napi hőingást kellene elviselnünk. A Vénusz ilyen szempontból szerencsésebb, mert a vastag, szén-dioxidban gazdag légkör üvegházhatása megtartja a hőt, így jóval állandóbb a hőmérséklet. Az más kérdés, hogy ez a közel állandó hőmérséklet több mint 400 °C. Ezek a bolygók tehát nem szerepelnek a második Föld listán.
Bár jelenlegi formájában a Mars cseppet sem hívogató, mégis, jobb híján a marsi élet lehetséges kivitelezésén dolgozik számtalan kutató és mérnök, többek között az Elon Musk vezette SpaceX is.
A Naprendszer bolygói közül a Marsról tudunk a legtöbbet, ennek oka, hogy itt már a bolygó felszínén is számtalan mérés történt, és történik most is. Sok szempontból Föld-szerűnek tekinthető, gondolva itt a jégsapkákra, a kialudt vulkánokra vagy az évszakokra.
Bár a légkör több mint 95%-a szén-dioxid, de nagyon vékony, így az üvegházhatás közel sem elég erős egy számunkra kellemes átlaghőmérséklet kialakításához. Mivel a Mars másfélszer olyan messze van a Naptól, mint a Föld, ezért mínusz 62 °C az átlaghőmérséklet (szemben a Föld +15-16 Celsius-fokával), és több mint száz Celsius fokos a napi hőingás.
A Mars az egyetlen olyan bolygó, ahol a jelenlegi vizsgálatok alapján víz található, de csak a felszín alatt. Bár néhány milliárd éve még vízfolyamok tarkíthatták a felszínét, az ősi víz egy része beszivárgott és jelenleg be van zárva a kőzetekbe, egy része pedig elszökött a világűrbe. Az utóbbi jelenség oka, hogy kialakulása után körülbelül 500 millió évvel a Mars légkörének jó részét elragadta a napszél, melynek egyik oka a földiéhez hasonló, védelmező mágneses mező elvesztése 4,2 milliárd évvel ezelőtt.

Forrás: NASA
A csökkenő mennyiségű légkör hatására nemcsak az ember számára is kellemes átlaghőmérsékletet biztosító üvegházhatás gyengült, hanem elpárolgott az éltető víz jó része is.
A Marsra már eddig is rengeteg műholdat és marsjárót küldtünk, legismertebbek az Opportunity, a még mindig üzemelő Curiosity, vagy a 2021 februárjában landolt Perseverance és Ingeunity. Elon Musk és a SpaceX azonban elkötelezett abban, hogy még ebben az évtizedben embert küldjön a vörös bolygóra. Milyen módon maradhatnak életben az oda érkező emberek? A rövid távú megoldás a kolonizáció, a hosszú távú a terraformálás. Kezdjük a számunkra kellemesebb, utóbbi megoldással.
A terraformálás annyit jelent, hogy a technológia segítségével egy bolygót ténylegesen lakhatóvá teszünk, hogy ne csak védett bázisok belsejében legyen élhető, hanem a szabad ég alatt is. Ehhez először ismét csak szükségünk van légkörre. Ezt úgy tudnánk például elérni, ha valamiképp aszteroidákkal volnánk képesek bombázni a bolygó jégtakaróját, így a fagyott szén-dioxidból álló jég szublimálna, vagyis szilárdból azonnal gázzá alakulna. Az így a légkörbe kerülő szén-dioxid pedig megemelné a hőmérsékletet.
Egy másik lehetőség, hogy valamiképp megolvasztjuk a marsi jégsapkákat így a jégbe zárt szén-dioxid szintén kikerülne a légkörbe. Mindkét megoldás egyelőre a tudományos fantasztikum szintjén mozog, a költségekről és az erőforrásokról nem is beszélve, és ez csak az első lépés lenne a sok közül.
Ha ennek az elméleti megvalósításával még adunk pár évtizedet a tudománynak, akkor másik lehetőség a talán egyszerűbb kolonizálás, marsbázisok telepítésével. Ez nem is tűnik olyan távolinak, hiszen számtalan mérnök és kutató, köztük Elon Musk és csapata is ezen a küldetésen dolgozik. A Musk által elindított SpaceX projekt egyik célja, hogy űrhajójuk nemcsak sikeresen landoljon a Marson, de az ottani erőforrások segítségével térjen vissza a Földre. Egy ilyen küldetés sikere utat nyitna nemcsak az űrturizmus, hanem egy Marson élő expedíciós kolónia számára is.
Azonban, ahogy a Kurzgesagt alábbi, szórakoztató, de annál komolyabb kérdéseket boncolgató videójából is kiderül, a Marson való hosszú távú tartózkodás olyan kihívások elé állítaná az embert, aminek elviselésére csak a legedzettebb űrhajósok lehetnek alkalmasak, a népesség döntő része biztosan nem.
A cikk nyitó példájánál maradva: a Marson nem tud az ember lélegezni. Mesterségesen ellátható a bázis megfelelő összetételű levegővel, de ehhez energia szükséges. A Nap energiájából a Földhöz képest jóval kevesebbet kapó Marson a rendszeresen körbefutó, árnyékoló porviharok nem kedveznek a napenergia-termelésnek. A szélenergiához nem elég sűrű a légkör, a geotermikus energiatermeléshez túl hideg a bolygó.
Az erősen rákkeltő kozmikus sugárzástól szintén nem védene a légkör, úgy ahogy a Föld esetén teszi. A talaj erősen lúgos, hiányoznak belőle a növénytermesztéshez szükséges tápanyagok. A földihez képest 38%-nyi gravitáció pedig a csontok és izomzat leépüléséhez vezetne.
A földi élethez hasonló életre alkalmas bolygó után kutatva a csillagok körüli élhető zónában (“habitable zone”) kell elkezdeni a keresgélést. Az élhető zónában található bolygók olyan távolságra keringenek a csillagtól, ahol a hőmérséklet megfelelő lehet a folyékony víz jelenlétéhez a felszínen. Az élhető zóna klasszikus megközelítése az élet jelei után kutatva ráadásul nem elég pontos, hiszen a folyékony víz jelenlétéhez megfelelő hőmérséklet nemcsak a távolságtól, hanem a légkör jelenlététől, uralkodó nyomási viszonyoktól stb. függ.
A Naprendszerünkhöz legközelebb eső másik rendszer a Proxima Centauri. Azonban ez is elég messze van, hiszen
Ennek egyik bolygója, a Proxima Centauri B, a központi csillagtól élhető távolságra kering, tehát annyi energia jut a bolygóra, ami megfelelhet a folyékony víz jelenlétének a felszínen. A Földnél körülbelül 1,3-szor nagyobb tömegű, de hasonló méretű kőzetbolygó. Hússzor közelebb van a központi csillaghoz, mint a Föld a Naphoz így egy év mindössze 11 földi nap.
Az eddigi kutatási eredmények alapján nem kizárt, hogy van légköre a bolygónak, sőt az oxigén jelenléte sem lehetetlen. A mágneses tér hiánya, a csillaghoz való közelsége és a központi, a Napunktól eltérő típusú csillag erőteljes sugárzása okozta extrém űridőjárás miatt azonban valószínűtlen az élet a bolygón.
Ennek oka, hogy a Proxima Centaurihoz hasonló vörös törpe csillagok jóval erősebben sugároznak röntgen és ultraibolya tartományban, mint a mi Napunk, aminek hatására az élethez fontos oxigén és nitrogén fokozatosan (néhány millió éves távlatban) elszökik a világűrbe. A becslések alapján nem valószínű, hogy a hiányzó molekulákat például vulkanizmusból származó gázok pótolnák, ráadásul nincs a bolygónak mágneses tere, ami valamennyire védelmezné a napszéltől. Így a jó adottságok ellenére valószínűleg nem tud az általunk ismert élet rajta kialakulni.
A Proxima Centauri B mellett rengeteg felfedezésre váró potenciális exobolygó, vagyis Naprendszerünkön kívüli bolygó kering a világűrben. Ezek azonban már annyira messze vannak, hogy még a jelenleg nem létező fénysebességgel történő utazás esetén is több mint egy emberöltőbe telne az út. Ilyen a Kepler űrteleszkóp segítségével vizsgált Kepler-1649c exobolygó mely a teleszkóp által vizsgált bolygók közül leginkább hasonlít a Földre. Amellett azonban, hogy a Proxima Centauri B-hez hasonlóan ez is egy vörös törpe körül kering, a becslések alapján 300 fényévnyire található így a legnagyobb jóindulattal sem nevezhető B tervnek az emberiség számára.
Még abban az esetben is, ha hirtelen valósággá válnak jelenleg kockás papíron létező technológiák, mint a fénysebességgel való utazás és az anyagi és erőforrás akadályokat is figyelmen kívül hagyjuk,
Az űrkutatás az emberiség egyik legizgalmasabb projektje, ahogy a Holdra szállás, vagy a különböző Mars expedíciók is civilizációnk csúcsteljesítményei közé tartoznak. Számtalan technológiai újítást és tudományos eredményt köszönhetünk az ide becsatornázott pénz- és humántőkének, aminek az áldásait ma a társadalom széles rétegei élvezik.
Azonban az univerzum kutatása nem szabad, hogy abba a téves és hamis hitbe ringasson minket, hogy fel kell adnunk azokat a törekvéseket, hogy mérsékeljük a környezeti-éghajlati válságot, és elhagyjuk egyetlen ismert otthonunkat, a Földet. A kettő nem áll ellentmondásban: egy egészséges, életfeltételeinket biztosító földi környezetből, kiszámítható éghajlat alól a csillagok felé tekinteni is könnyebb.
via Másfélfok
Te mit csinálnál másképp? - Csatlakozz a klímaváltozás hatásairól, a műanyagmentességről és a zero waste-ről szóló facebook-csoportunkhoz, és oszd meg a véleményedet, tapasztalataidat!